.Formula for cutting the original squares so that the half-square triangles are oversized is:

Finished size $\times 2+2$

Don't care to do the math? Not a problem! Follow the cutting chart below.

Finished Size HST:	Cut Squares:	Trim completed HSTs to:
1" $\times 1$ 1"	(2) $4^{\prime \prime} \times 4^{\prime \prime}$	1 1/2" $\times 1$ 1/2"
1 1/2"x 1 1/2"	(2) $5^{\prime \prime} \times 5^{\prime \prime}$	2" $\times 2$ "
2" $\times 2$ "	(2) $6^{\prime \prime} \times 6^{\prime \prime}$	21/2" $\times 2$ 1/2"
2 1/2" $\times 2$ 1/2"	(2) 7 " 7 "	3" $\times 3$ "
3" $\times 3$ "	(2) $8^{\prime \prime} \times 8$ "	3 1/2" $\times 3$ 1/2"
3 1/2" x 3 1/2"	(2) $9^{\prime \prime} \times 9$ 9	4" $\times 4 \prime$
4" $\times 4$ "	(2) $10^{\prime \prime} \times 10^{\prime \prime}$	41/2" $\times 4$ 1/2"
4 1/2" $\times 4$ 1/2"	(2) $11^{\prime \prime} \times 11^{\prime \prime}$	5" \times 5"
5" \times 5"	(2) $12^{\prime \prime} \times 12^{\prime \prime}$	5 1/2" $\times 5$ 1/2"
5 1/2" $\times 5$ 1/2"	(2) $13^{\prime \prime} \times 13^{\prime \prime}$	$6^{\prime \prime} \times 6$ '
$6^{\prime \prime} \times 6$	(2) $14^{\prime \prime} \times 14^{\prime \prime}$	$61 / 2^{\prime \prime} \times 6$ 1/2"
6 1/2" $\times 6$ 1/2"	(2) $15^{\prime \prime} \times 15^{\prime \prime}$	$7 "$ x 7

Finished Size HST:	Cut Squares:	Trim completed HSTs to:
7" \times 7"	(2) $16^{\prime \prime} \times 16^{\prime \prime}$	7 1/2" x 7 1/2"
7 1/2"x 7 1/2"	(2) $17^{\prime \prime} \times 17^{\prime \prime}$	$8 \prime \times 8 \prime$
$8^{\prime \prime} \times 8{ }^{\prime \prime}$	(2) $18^{\prime \prime} \times 18^{\prime \prime}$	$81 / 2^{\prime \prime} \times 8$ 1/2"
$81 / 2^{\prime \prime} \times 8$ 1/2"	(2) $19^{\prime \prime} \times 19^{\prime \prime}$	9" $\times 90$
9" $\times 97$	(2) $20^{\prime \prime} \times 20^{\prime \prime}$	9 1/2" x 9 1/2"
9 1/2" x 9 1/2"	(2) $21^{\prime \prime} \times 21^{\prime \prime}$	$10^{\prime \prime} \times 10^{\prime \prime}$
$10^{\prime \prime} \times 10^{\prime \prime}$	(2) $22^{\prime \prime} \times 22^{\prime \prime}$	10 1/2" x 10 1/2"
10 1/2" $\times 10$ 1/2"	(2) $23^{\prime \prime} \times 23^{\prime \prime}$	$11^{\prime \prime} \times 11^{\prime \prime}$
$11^{\prime \prime} \times 11^{\prime \prime}$	(2) $24 \prime \times 24 \prime$	11 1/2" x 11 1/2"
11 1/2" x 11 1/2"	(2) $25^{\prime \prime} \times 25^{\prime \prime}$	$12^{\prime \prime} \times 12^{\prime \prime}$
$12^{\prime \prime} \times 12^{\prime \prime}$	(2) $26^{\prime \prime} \times 26^{\prime \prime}$	12 1/2" $\times 12$ 1/2"

To read this chart, "Finished HST" means, completely sewn into a block. Find either the finished size or trim completed HSTs to" size to determine what the cut size is for your squares.

